is,im
isim iste söyle bir sey:
Behavior of an applet $A$ is described by the specification
$b(A)=(M_b,E_b)$, where
$\mathcal{M}_{b}=(S_{b},L_{b},\rightarrow_{b},A_{b},\lambda_{b},
O_b)$ is defined as follows:
$S_b$ = $N \times T \times L \times W$ where \\
$T: Tid \rightarrow (V \times V^* \times (\B \times O \times \N))$
function that gives for each thread a control point, a stack and
a triple that marks if the thread is blocked, the object that it blocked on
and the number of locks it should reclaim to unblock.\\
$L: O \rightarrow (\mathbb{N} \cup \{\bot\} \times \mathbb{N})$
gives for
every object a pair consisting of a thread number and a lock counter,\\
$W: O \rightarrow 2^{Tid}$ returns for each object the list of the
threads that are waiting for the object.
\item
\begin{tabular}{ll}
$L_b$ =& $\{m_1\:l\:m_2 \mid l \in \{\call{}{},\ret{}{}\}, m_1, m_2 \in I^+\}$\\
& $\bigcup$ $\{\spawn m \mid m \in I^+\}$ \\
& $\bigcup$ $\{\join j \mid j \in \mathbb{N}\}$ \\
& $\bigcup$ $\{l \: o \mid l \in \{\acquire, \release, \Notify, \NotifyAll, \Wait,\Resume\}, o \in O\}$ \\
\end{tabular}
Behavior of an applet $A$ is described by the specification
$b(A)=(M_b,E_b)$, where
$\mathcal{M}_{b}=(S_{b},L_{b},\rightarrow_{b},A_{b},\lambda_{b},
O_b)$ is defined as follows:
$S_b$ = $N \times T \times L \times W$ where \\
$T: Tid \rightarrow (V \times V^* \times (\B \times O \times \N))$
function that gives for each thread a control point, a stack and
a triple that marks if the thread is blocked, the object that it blocked on
and the number of locks it should reclaim to unblock.\\
$L: O \rightarrow (\mathbb{N} \cup \{\bot\} \times \mathbb{N})$
gives for
every object a pair consisting of a thread number and a lock counter,\\
$W: O \rightarrow 2^{Tid}$ returns for each object the list of the
threads that are waiting for the object.
\item
\begin{tabular}{ll}
$L_b$ =& $\{m_1\:l\:m_2 \mid l \in \{\call{}{},\ret{}{}\}, m_1, m_2 \in I^+\}$\\
& $\bigcup$ $\{\spawn m \mid m \in I^+\}$ \\
& $\bigcup$ $\{\join j \mid j \in \mathbb{N}\}$ \\
& $\bigcup$ $\{l \: o \mid l \in \{\acquire, \release, \Notify, \NotifyAll, \Wait,\Resume\}, o \in O\}$ \\
\end{tabular}
0 Comments:
Post a Comment
<< Home